enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  3. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  4. Vector space model - Wikipedia

    en.wikipedia.org/wiki/Vector_space_model

    Where is the intersection (i.e. the dot product) of the document (d 2 in the figure to the right) and the query (q in the figure) vectors, ‖ ‖ is the norm of vector d 2, and ‖ ‖ is the norm of vector q.

  5. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    This real Jordan form is a consequence of the complex Jordan form. For a real matrix the nonreal eigenvectors and generalized eigenvectors can always be chosen to form complex conjugate pairs. Taking the real and imaginary part (linear combination of the vector and its conjugate), the matrix has this form with respect to the new basis.

  6. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    Dual norm – Measurement on a normed vector space; Matrix normNorm on a vector space of matrices; Norm (mathematics) – Length in a vector space; Normed space – Vector space on which a distance is defined; Operator algebra – Branch of functional analysis

  7. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    An inner product space is a normed vector space whose norm is the square root of the inner product of a vector and itself. The Euclidean norm of a Euclidean vector space is a special case that allows defining Euclidean distance by the formula (,) = ‖ ‖.

  8. Dual norm - Wikipedia

    en.wikipedia.org/wiki/Dual_norm

    The Frobenius norm defined by ‖ ‖ = = = | | = ⁡ = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...

  9. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    It is possible to give a fairly long list of equivalent definitions of a normal matrix. Let A be a n × n complex matrix. Then the following are equivalent: A is normal. A is diagonalizable by a unitary matrix. There exists a set of eigenvectors of A which forms an orthonormal basis for C n.