Search results
Results from the WOW.Com Content Network
A closely related yet independent quantity is the group-delay dispersion (GDD), defined such that group-velocity dispersion is the group-delay dispersion per unit length. GDD is commonly used as a parameter in characterizing layered mirrors, where the group-velocity dispersion is not particularly well-defined, yet the chirp induced after ...
For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10 −6 over the wavelengths' range [5] of 365 nm to 2.3 μm, which is of the order of the homogeneity of a glass sample. [6]
A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the value of the function. [1] The variable denoting time is usually written as t {\displaystyle t} .
What follows is the Richtmyer two-step Lax–Wendroff method. The first step in the Richtmyer two-step Lax–Wendroff method calculates values for f(u(x, t)) at half time steps, t n + 1/2 and half grid points, x i + 1/2. In the second step values at t n + 1 are calculated using the data for t n and t n + 1/2.
The van Deemter equation is a hyperbolic function that predicts that there is an optimum velocity at which there will be the minimum variance per unit column length and, thence, a maximum efficiency. The van Deemter equation was the result of the first application of rate theory to the chromatography elution process.
That is, the α-th derivative of δ a is the distribution whose value on any test function φ is the α-th derivative of φ at a (with the appropriate positive or negative sign). The first partial derivatives of the delta function are thought of as double layers along the coordinate planes.
The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale (also known as a time-set), which may be an arbitrary closed subset of the reals. In this way, results apply not only to the set of real numbers or set of integers but to more general time scales such as a Cantor set.
where is the amplitude of Gaussian, = is exponent relaxation time, is a variance of exponential probability density function. This function cannot be calculated for some values of parameters (for example, =) because of arithmetic overflow.