enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Group-velocity dispersion - Wikipedia

    en.wikipedia.org/wiki/Group-velocity_dispersion

    A closely related yet independent quantity is the group-delay dispersion (GDD), defined such that group-velocity dispersion is the group-delay dispersion per unit length. GDD is commonly used as a parameter in characterizing layered mirrors, where the group-velocity dispersion is not particularly well-defined, yet the chirp induced after ...

  3. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10 −6 over the wavelengths' range [5] of 365 nm to 2.3 μm, which is of the order of the homogeneity of a glass sample. [6]

  4. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  5. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  6. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on.

  7. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a finite difference model can be derived, and the valuation obtained. [2]

  8. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    In continuum mechanics, the material derivative [1] [2] describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum ...

  9. Airy function - Wikipedia

    en.wikipedia.org/wiki/Airy_function

    In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai( x ) and the related function Bi( x ) , are linearly independent solutions to the differential equation d 2 y d x 2 − x y = 0 , {\displaystyle {\frac ...

  1. Related searches derivative of dispersion time value formula excel tutorial youtube

    derivative of dispersion time value formula excel tutorial youtube for beginners