Search results
Results from the WOW.Com Content Network
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by ( − θ {\displaystyle -\theta } ) for plotting.
An Archimedean spiral is, for example, generated while coiling a carpet. [5] A hyperbolic spiral appears as image of a helix with a special central projection (see diagram). A hyperbolic spiral is some times called reciproke spiral, because it is the image of an Archimedean spiral with a circle-inversion (see below). [6]
The Archimedean spiral is shown in red, and corresponds to the values 0 ≤ θ ≤ 8π of the angle parameter, while the Involute of the circle is shown in black, and corresponds to the values 0 ≤ θ ≤ 17π/2 of the angle parameter. The x-axis extends from -25 to +28 and the y-axis from -26.4 to +23.4, and there are tick marks at -20, -10 ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Spirals. Archimedean spiral; Cornu spiral; Cotes' spiral; Fermat's spiral; Galileo's spiral [4] ... but a diagram showing how the elements meet. Tessellations
They are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point. For instance, the examples above show how elementary polar equations suffice to define curves—such as the Archimedean spiral—whose equation in the Cartesian coordinate system would be much more ...