enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Triple-resonance nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Triple-resonance_nuclear...

    The first of these is by X-ray crystallography, starting in 1958 when the crystal structure of myoglobin was determined. The second method is by NMR, which began in the 1980s when Kurt Wüthrich outlined the framework for NMR structure determination of proteins and solved the structure of small globular proteins. [5]

  3. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    X-ray crystallography is still the primary method for characterizing the atomic structure of materials and in differentiating materials that appear similar in other experiments. X-ray crystal structures can also help explain unusual electronic or elastic properties of a material, shed light on chemical interactions and processes, or serve as ...

  4. Nucleic acid structure determination - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure...

    Nucleic acid NMR is the use of NMR spectroscopy to obtain information about the structure and dynamics of nucleic acid molecules, such as DNA or RNA. As of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy. [2] Nucleic acid NMR uses similar techniques as protein NMR, but has several differences.

  5. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A common goal of these investigations is to obtain high resolution 3-dimensional structures of the protein, similar to what can be achieved by X-ray crystallography. In contrast to X-ray crystallography, NMR spectroscopy is usually limited to proteins smaller than 35 kDa, although larger structures have been solved. NMR spectroscopy is often ...

  6. Crystallography - Wikipedia

    en.wikipedia.org/wiki/Crystallography

    The series contains books that covers analysis methods and the mathematical procedures for determining organic structure through x-ray crystallography, electron diffraction, and neutron diffraction. The International tables are focused on procedures, techniques and descriptions and do not list the physical properties of individual crystals ...

  7. Structural biology - Wikipedia

    en.wikipedia.org/wiki/Structural_biology

    The most prominent techniques are X-ray crystallography, nuclear magnetic resonance, and electron microscopy. Through the discovery of X-rays and its applications to protein crystals, structural biology was revolutionized, as now scientists could obtain the three-dimensional structures of biological molecules in atomic detail. [2]

  8. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Nuclear magnetic resonance crystallography (NMR crystallography) is a method which utilizes primarily NMR spectroscopy to determine the structure of solid materials on the atomic scale. Thus, solid-state NMR spectroscopy would be used primarily, possibly supplemented by quantum chemistry calculations (e.g. density functional theory ), [ 1 ...

  9. Nuclear magnetic resonance spectroscopy of proteins - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A set of conformations, determined by NMR or X-ray crystallography may be a better representation of the experimental data of a protein than a unique conformation. [23] The utility of a model will be given, at least in part, by the degree of accuracy and precision of the model.