Search results
Results from the WOW.Com Content Network
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
with domain, the range of , sometimes denoted or (), [4] may refer to the codomain or target set (i.e., the set into which all of the output of is constrained to fall), or to (), the image of the domain of under (i.e., the subset of consisting of all actual outputs of ). The image of a function is always a subset of the codomain of the ...
More generally, the restriction (or domain restriction or left-restriction) of a binary relation between and may be defined as a relation having domain , codomain and graph ( ) = {(,) ():}. Similarly, one can define a right-restriction or range restriction R B . {\displaystyle R\triangleright B.}
In mathematics, the support of a real-valued function is the subset of the function domain of elements that are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero.
In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.
Domain coloring plot of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i , using the structured color function described below. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane. By assigning points on the ...
Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.
The independent variable x does not appear on the right side of the function expression and so its value is "vacuously substituted"; namely y(0) = 4, y(−2.7) = 4, y(π) = 4, and so on. No matter what value of x is input, the output is 4. [1] The graph of the constant function y = c is a horizontal line in the plane that passes through the ...