enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/GibbsHelmholtz_equation

    The Gibbs–Helmholtz equation is a thermodynamic equation used to calculate changes in the Gibbs free energy of a system as a function of temperature. It was originally presented in an 1882 paper entitled " Die Thermodynamik chemischer Vorgänge " by Hermann von Helmholtz .

  3. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    Internal consistency requires that all values of the thermodynamic functions are correctly calculated by application of the appropriate thermodynamic equations. For example, values of the Gibbs energy obtained from high-temperature equilibrium emf methods must be identical to those calculated from calorimetric measurements of the enthalpy and ...

  4. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    The differential form of Helmholtz free energy is = = (), = From symmetry of second derivatives = and therefore that = The other two Maxwell relations can be derived from differential form of enthalpy = + and the differential form of Gibbs free energy = in a similar way.

  5. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    The maximum work is thus regarded as the diminution of the free, or available, energy of the system (Gibbs free energy G at T = constant, P = constant or Helmholtz free energy F at T = constant, V = constant), whilst the heat given out is usually a measure of the diminution of the total energy of the system (internal energy).

  6. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...

  7. Gibbs isotherm - Wikipedia

    en.wikipedia.org/wiki/Gibbs_isotherm

    The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is

  8. Maxwell construction - Wikipedia

    en.wikipedia.org/wiki/Maxwell_construction

    Another method to determine the coexistence points is based on the Helmholtz potential minimum principle, which states that in a system in diathermal contact with a heat reservoir =, = and >, namely at equilibrium the Helmholtz potential is a minimum. [25]

  9. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.