Search results
Results from the WOW.Com Content Network
An atomic vapor laser isotope separation experiment at LLNL. The green light is from a copper vapor pump laser used to pump a highly tuned dye laser which is producing the orange light. Atomic vapor laser isotope separation , or AVLIS , is a method by which specially tuned lasers are used to separate isotopes of uranium using selective ...
Laser isotope separation, or laser enrichment, is a technology of isotope separation using selective ionization of atoms or molecules by the means of precisely tuned lasers. The techniques are: Atomic vapor laser isotope separation (AVLIS), applied to atoms; Molecular laser isotope separation (MLIS), applied to molecules
Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms).
Infrared absorption spectra of the two UF 6 isotopes at 300 and 80 K. Schematic of a stage of an isotope separation plant for uranium enrichment with laser. An infrared laser with a wavelength of approx. 16 μm radiates at a high repetition rate onto a UF6 carrier gas mixture, which flows supersonically out of a laval nozzle.
The atomic vapor laser isotope separation (AVLIS) process uses the hyperfine splitting between optical transitions in uranium-235 and uranium-238 to selectively photo-ionize only the uranium-235 atoms and then separate the ionized particles from the non-ionized ones.
Isotope separation facilities (1 C, 5 P) Pages in category "Isotope separation" ... Atomic vapor laser isotope separation; C. Calutron; Calutron Girls; COLEX process; D.
Isotope separation [ edit ] Due to the relatively large differences in IR absorption frequencies that are due to different resonance frequencies for molecules containing different isotopes, this technique has been suggested as a way to perform Isotope separation with difficult-to-separate isotopes, in a single pass.
Molecular laser isotope separation (MLIS) is a method of isotope separation, where specially tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions of uranium hexafluoride molecules. It is similar to AVLIS. Its main advantage over AVLIS is low energy consumption and use of uranium hexafluoride ...