enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    Faraday discovered that when the same amount of electric current is passed through different electrolytes connected in series, the masses of the substances deposited or liberated at the electrodes are directly proportional to their respective chemical equivalent/equivalent weight (E). [3]

  3. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...

  4. Electrochemical equivalent - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_equivalent

    In chemistry, the electrochemical equivalent (Eq or Z) of a chemical element is the mass of that element (in grams) transported by a specific quantity of electricity, usually expressed in grams per coulomb of electric charge. [1] The electrochemical equivalent of an element is measured with a voltameter.

  5. Faraday constant - Wikipedia

    en.wikipedia.org/wiki/Faraday_constant

    Related to the Faraday constant is the "faraday", a unit of electrical charge. Its use is much less common than of the coulomb, but is sometimes used in electrochemistry. [4] One faraday of charge is the charge of one mole of elementary charges (or of negative one mole of electrons), that is, 1 faraday = F × 1 mol = 9.648 533 212 331 001 84 × ...

  6. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  7. Kröger–Vink notation - Wikipedia

    en.wikipedia.org/wiki/Kröger–Vink_Notation

    Using equation 5, the formula can be simplified into the following form where the enthalpy of formation can be directly calculated: [v ⁠ ′ ′ {\displaystyle \prime \prime } ⁠ Mg ] = exp ( − ⁠ Δ f H / 2 k B T ⁠ + ⁠ Δ f S / 2 k B ⁠ ) = A exp ( − ⁠ Δ f H / 2 k B T ⁠ ) , where A is a constant containing the entropic term.

  8. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  9. Charge number - Wikipedia

    en.wikipedia.org/wiki/Charge_number

    In that case, the charge of an ion could be written as =. The charge number in chemistry normally relates to an electric charge. This is a property of specific subatomic atoms. These elements define the electromagnetic contact between the two elements. A chemical charge can be found by using the periodic table.