Search results
Results from the WOW.Com Content Network
The Hamiltonian cycle problem is similar to the Hamiltonian path problem, except it asks if a given graph contains a Hamiltonian cycle. This problem may also specify the start of the cycle. The Hamiltonian cycle problem is a special case of the travelling salesman problem, obtained by setting the distance between two cities to one if they are ...
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...
Cycle detection is the problem of finding i and j, given f and x 0. Several algorithms are known for finding cycles quickly and with little memory. Robert W. Floyd 's tortoise and hare algorithm moves two pointers at different speeds through the sequence of values until they both point to equal values.
An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. [4] The term "Eulerian graph" is also sometimes used in a weaker sense to denote a graph where every vertex has even degree.
In an undirected graph, the edge to the parent of a node should not be counted as a back edge, but finding any other already visited vertex will indicate a back edge. In the case of undirected graphs, only O(n) time is required to find a cycle in an n-vertex graph, since at most n − 1 edges can be tree edges.
Karp's reduction also implies the NP-completeness of the feedback vertex set problem on undirected graphs, where the problem stays NP-complete on graphs of maximum degree four. The feedback vertex set problem can be solved in polynomial time on graphs of maximum degree at most three, using an algorithm based on the matroid parity problem. [2]
If the graph is connected, it finds a minimum spanning tree. It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2] The key steps of the algorithm are sorting and the use of a disjoint-set data structure to detect cycles. Its running time is dominated by the time to sort all of the ...
A disjoint cycle cover of an undirected graph (if it exists) can be found in polynomial time by transforming the problem into a problem of finding a perfect matching in a larger graph. [1] [2] If the cycles of the cover have no edges in common, the cover is called edge-disjoint or simply disjoint cycle cover.