Search results
Results from the WOW.Com Content Network
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
The band gap (usually given the symbol ) gives the energy difference between the lower edge of the conduction band and the upper edge of the valence band. Each semiconductor has different electron affinity and band gap values. For semiconductor alloys it may be necessary to use Vegard's law to calculate these values.
Diagram of the conduction and valence bands in a semiconductor at a temperature of 0K. Diagram of the conduction and valence bands in a semiconductor at a temperature above 0K. Diagram of the conduction and valence bands in an n-type semiconductor at temperatures above 0K.
The name "valence band" was coined by analogy to chemistry, since in semiconductors (and insulators) the valence band is built out of the valence orbitals. In a metal or semimetal, the Fermi level is inside of one or more allowed bands. In semimetals the bands are usually referred to as "conduction band" or "valence band" depending on whether ...
Because a band diagram shows the changes in the band structure from place to place, the resolution of a band diagram is limited by the Heisenberg uncertainty principle: the band structure relies on momentum, which is only precisely defined for large length scales. For this reason, the band diagram can only accurately depict evolution of band ...
Based on the energy eigenvalues, conduction band are the high energy states (E>0) while valence bands are the low energy states (E<0). In some materials, for example, in graphene and zigzag graphene quantum dot, there exists the energy states having energy eigenvalues exactly equal to zero (E=0) besides the conduction and valence bands. These ...
The conduction and valence bands, respectively, correspond to the different signs. With one p z electron per atom in this model the valence band is fully occupied, while the conduction band is vacant. The two bands touch at the zone corners (the K point in the Brillouin zone), where there is a zero density of states but no band gap. The ...
For holes, is the number of holes per unit volume in the valence band. To calculate this number for electrons, we start with the idea that the total density of conduction-band electrons, n 0 {\displaystyle n_{0}} , is just adding up the conduction electron density across the different energies in the band, from the bottom of the band E c ...