Search results
Results from the WOW.Com Content Network
The atomic packing factor of a unit cell is relevant to the study of materials science, where it explains many properties of materials. For example, metals with a high atomic packing factor will have a higher "workability" (malleability or ductility ), similar to how a road is smoother when the stones are closer together, allowing metal atoms ...
Each sphere in a cP lattice has coordination number 6, in a cI lattice 8, and in a cF lattice 12. Atomic packing factor (APF) is the fraction of volume that is occupied by atoms. The cP lattice has an APF of about 0.524, the cI lattice an APF of about 0.680, and the cF lattice an APF of about 0.740.
Watts Water Technologies, Inc. is a company based in the United States that makes valve products for plumbing and heating, such as water pressure regulators and other valves. [1] Watts is one of the largest manufacturers of water valves in the United States. The company was founded by Joseph Watts. [2] It employs about 4,500 employees. [1]
In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
For most bodies the value of the packing constant is unknown. [1] The following is a list of bodies in Euclidean spaces whose packing constant is known. [1] Fejes Tóth proved that in the plane, a point symmetric body has a packing constant that is equal to its translative packing constant and its lattice packing constant. [2]
Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container.
A compact binary circle packing with the most similarly sized circles possible. [7] It is also the densest possible packing of discs with this size ratio (ratio of 0.6375559772 with packing fraction (area density) of 0.910683). [8] There are also a range of problems which permit the sizes of the circles to be non-uniform.