enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  3. Semicircle - Wikipedia

    en.wikipedia.org/wiki/Semicircle

    For a semicircle with a diameter of a + b, the length of its radius is the arithmetic mean of a and b (since the radius is half of the diameter). The geometric mean can be found by dividing the diameter into two segments of lengths a and b, and then connecting their common endpoint to the semicircle with a segment perpendicular to the diameter ...

  4. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    The centroid of a triangle is the point of intersection of its medians (the lines joining each vertex with the midpoint of the opposite side). [6] The centroid divides each of the medians in the ratio 2 : 1 , {\displaystyle 2:1,} which is to say it is located 1 3 {\displaystyle {\tfrac {1}{3}}} of the distance from each side to the opposite ...

  5. Centre (geometry) - Wikipedia

    en.wikipedia.org/wiki/Centre_(geometry)

    The "vertex centroid" comes from considering the polygon as being empty but having equal masses at its vertices. The "side centroid" comes from considering the sides to have constant mass per unit length. The usual centre, called just the centroid (centre of area) comes from considering the surface of the polygon as having constant density ...

  6. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    If is held constant, and the radius is allowed to vary, then we have = As the central angle approaches π, the area of the segment is converging to the area of a semicircle, π R 2 2 {\displaystyle {\tfrac {\pi R^{2}}{2}}} , so a good approximation is a delta offset from the latter area:

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.

  8. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Brahmagupta's theorem states that for a cyclic quadrilateral that is also orthodiagonal, the perpendicular from any side through the point of intersection of the diagonals bisects the opposite side. [23] If a cyclic quadrilateral is also orthodiagonal, the distance from the circumcenter to any side equals half the length of the opposite side. [23]

  9. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...