Search results
Results from the WOW.Com Content Network
In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.
An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an abelian group under addition, and the four remaining axioms (related to the scalar multiplication) say that this operation defines a ring homomorphism from the ...
Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.
A convex cone is a cone that is also closed under addition, or, equivalently, a subset of a vector space that is closed under linear combinations with positive coefficients. It follows that convex cones are convex sets .
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.
A closed subspace of a Banach space is said to be almost-invariant under an operator () if + for some finite-dimensional subspace ; equivalently, is almost-invariant under if there is a finite-rank operator such that (+), i.e. if is invariant (in the usual sense) under +.
Linear subspace, in linear algebra, a subset of a vector space that is closed under addition and scalar multiplication; Flat (geometry), a Euclidean subspace; Affine subspace, a geometric structure that generalizes the affine properties of a flat; Projective subspace, a geometric structure that generalizes a linear subspace of a vector space
In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces , named after Henri Lebesgue ( Dunford & Schwartz 1958 , III.3), although according to the Bourbaki group ( Bourbaki 1987 ) they were first introduced by Frigyes ...