enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.

  3. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    A linear subspace or vector subspace W of a vector space V is a non-empty subset of V that is closed under vector addition and scalar multiplication; that is, the sum of two elements of W and the product of an element of W by a scalar belong to W. [10] This implies that every linear combination of elements of W belongs to W. A linear subspace ...

  4. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.

  5. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    A convex cone is a cone that is also closed under addition, or, equivalently, a subset of a vector space that is closed under linear combinations with positive coefficients. It follows that convex cones are convex sets .

  6. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.

  7. Subspace - Wikipedia

    en.wikipedia.org/wiki/Subspace

    Linear subspace, in linear algebra, a subset of a vector space that is closed under addition and scalar multiplication; Flat (geometry), a Euclidean subspace; Affine subspace, a geometric structure that generalizes the affine properties of a flat; Projective subspace, a geometric structure that generalizes a linear subspace of a vector space

  8. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    The cross-hatched plane is the linear span of u and v in both R 2 and R 3, here shown in perspective.. In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains .

  9. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    An associative algebra is a ring that is also a vector space over a field n such that the scalar multiplication is compatible with the ring multiplication. For instance, the set of n-by-n matrices over the real field ⁠ ⁠ has dimension n 2 as a real vector space.