Search results
Results from the WOW.Com Content Network
On September 23, 2024, to further the International Decade of Indigenous Languages, Hugging Face teamed up with Meta and UNESCO to launch a new online language translator [13] built on Meta's No Language Left Behind open-source AI model, enabling free text translation across 200 languages, including many low-resource languages.
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. [1] It is part of the families of probabilistic graphical models and variational Bayesian methods .
Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom.
The discrete VAE can convert an image to a sequence of tokens, and conversely, convert a sequence of tokens back to an image. This is necessary as the Transformer does not directly process image data. [22] The input to the Transformer model is a sequence of tokenized image caption followed by tokenized image patches.
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]
The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.
The model architecture remains largely unchanged from that of LLaMA-1 models, but 40% more data was used to train the foundational models. [26] The accompanying preprint [26] also mentions a model with 34B parameters that might be released in the future upon satisfying safety targets. LLaMa 2 includes foundation models and models fine-tuned for ...