Search results
Results from the WOW.Com Content Network
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation , from which the stress and strain can be determined (see tensile testing ).
3) Based on the true stress-strain curve and its derivative form, we can estimate the strain necessary to start necking. This can be calculated based on the intersection between true stress-strain curve as shown in right. This figure also shows the dependency of the necking strain at different temperature.
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
As shown in Figure 6, to determine the stress components (,) acting on a plane at an angle counterclockwise to the plane on which acts, we travel an angle in the same counterclockwise direction around the circle from the known stress point (,) to point (,), i.e., an angle between lines ¯ and ¯ in the Mohr circle.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
The relationship between the shear stress and shear rate in a casson fluid model is defined as follows: = + where τ 0 is the yield stress and = (), where α depends on protein composition and H is the Hematocrit number.
In solid mechanics, the tangent modulus is the slope of the stress–strain curve at any specified stress or strain. Below the proportional limit (the limit of the linear elastic regime) the tangent modulus is equivalent to Young's modulus. Above the proportional limit the tangent modulus varies with strain and is most accurately found from ...