Search results
Results from the WOW.Com Content Network
The prominence of seemingly subjective or anthropocentric ideas like "observer" in the early development of the theory has been a continuing source of disquiet and philosophical dispute. [15] A number of new-age religious or philosophical views give the observer a more special role, or place constraints on who or what can be an observer.
In physics, the observer effect is the disturbance of an observed system by the act of observation. [1] [2] This is often the result of utilising instruments that, by necessity, alter the state of what they measure in some manner. A common example is checking the pressure in an automobile tire, which causes some of the air to escape, thereby ...
Stephen Wolfram was born in London in 1959 to Hugo and Sybil Wolfram, both German Jewish refugees to the United Kingdom. [10] His maternal grandmother was British psychoanalyst Kate Friedlander. Wolfram's father, Hugo Wolfram, was a textile manufacturer and served as managing director of the Lurex Company—makers of the fabric Lurex. [11]
The term observer also has special meaning in other areas of science, such as quantum mechanics, and information theory. See for example, Schrödinger's cat and Maxwell's demon . In general relativity the term "observer" refers more commonly to a person (or a machine) making passive local measurements, a usage much closer to the ordinary ...
Assume that the first observer uses coordinates labeled t, x, y, and z, while the second observer uses coordinates labeled t′, x′, y′, and z′. Now suppose that the first observer sees the second observer moving in the x-direction at a velocity v. And suppose that the observers' coordinate axes are parallel and that they have the same ...
This interaction is called an observation and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation. [2]
Because of this problem of undecidability in the formal language of computation, Wolfram terms this inability to "shortcut" a system (or "program"), or otherwise describe its behavior in a simple way, "computational irreducibility." The idea demonstrates that there are occurrences where theory's predictions are effectively not possible.
The basic subject of Wolfram's "new kind of science" is the study of simple abstract rules—essentially, elementary computer programs.In almost any class of a computational system, one very quickly finds instances of great complexity among its simplest cases (after a time series of multiple iterative loops, applying the same simple set of rules on itself, similar to a self-reinforcing cycle ...