enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Causal model - Wikipedia

    en.wikipedia.org/wiki/Causal_model

    Judea Pearl defines a causal model as an ordered triple ,, , where U is a set of exogenous variables whose values are determined by factors outside the model; V is a set of endogenous variables whose values are determined by factors within the model; and E is a set of structural equations that express the value of each endogenous variable as a function of the values of the other variables in U ...

  3. Causality (book) - Wikipedia

    en.wikipedia.org/wiki/Causality_(book)

    Causality: Models, Reasoning, and Inference (2000; [1] updated 2009 [2]) is a book by Judea Pearl. [3] It is an exposition and analysis of causality. [4] [5] It is considered to have been instrumental in laying the foundations of the modern debate on causal inference in several fields including statistics, computer science and epidemiology. [6]

  4. Rubin causal model - Wikipedia

    en.wikipedia.org/wiki/Rubin_causal_model

    Rubin defines a causal effect: Intuitively, the causal effect of one treatment, E, over another, C, for a particular unit and an interval of time from to is the difference between what would have happened at time if the unit had been exposed to E initiated at and what would have happened at if the unit had been exposed to C initiated at : 'If an hour ago I had taken two aspirins instead of ...

  5. Causal graph - Wikipedia

    en.wikipedia.org/wiki/Causal_graph

    Figure 1: Unidentified model with latent variables (and ) shown explicitly Figure 2: Unidentified model with latent variables summarized. Figure 1 is a causal graph that represents this model specification. Each variable in the model has a corresponding node or vertex in the graph.

  6. Bradford Hill criteria - Wikipedia

    en.wikipedia.org/wiki/Bradford_Hill_criteria

    The argument proposes that there are different motives behind defining causality; the Bradford Hill criteria applied to complex systems such as health sciences are useful in prediction models where a consequence is sought; explanation models as to why causation occurred are deduced less easily from Bradford Hill criteria because the instigation ...

  7. Causal inference - Wikipedia

    en.wikipedia.org/wiki/Causal_inference

    Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed.

  8. Causal sets - Wikipedia

    en.wikipedia.org/wiki/Causal_sets

    The best model for dynamics at the moment is a classical model in which elements are added according to probabilities. This model, due to David Rideout and Rafael Sorkin, is known as classical sequential growth (CSG) dynamics. [10] The classical sequential growth model is a way to generate causal sets by adding new elements one after another.

  9. Causal AI - Wikipedia

    en.wikipedia.org/wiki/Causal_AI

    Causal AI is a technique in artificial intelligence that builds a causal model and can thereby make inferences using causality rather than just correlation. One practical use for causal AI is for organisations to explain decision-making and the causes for a decision.