enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite element method - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method

    The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

  3. Finite element method in structural mechanics - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method_in...

    The finite element method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems. In the FEM, the structural system is modeled by a set of appropriate finite elements interconnected at discrete points called nodes.

  4. Trefftz method - Wikipedia

    en.wikipedia.org/wiki/Trefftz_method

    The hybrid Trefftz finite-element method has been considerably advanced since its introduction by J. Jiroušek in the late 1970s. [1] The conventional method of finite element analysis involves converting the differential equation that governs the problem into a variational functional from which element nodal properties – known as field variables – can be found.

  5. Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Galerkin_method

    t. e. In mathematics, in the area of numerical analysis, Galerkin methods are a family of methods for converting a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.

  6. Modal analysis using FEM - Wikipedia

    en.wikipedia.org/wiki/Modal_analysis_using_FEM

    The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration.It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable.

  7. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    Rayleigh–Ritz method. The Rayleigh–Ritz method is a direct numerical method of approximating eigenvalues, originated in the context of solving physical boundary value problems and named after Lord Rayleigh and Walther Ritz. In this method, an infinite-dimensional linear operator is approximated by a finite-dimensional compression, on which ...

  8. Structural analysis - Wikipedia

    en.wikipedia.org/wiki/Structural_analysis

    The finite element approach is actually a numerical method for solving differential equations generated by theories of mechanics such as elasticity theory and strength of materials. However, the finite-element method depends heavily on the processing power of computers and is more applicable to structures of arbitrary size and complexity.

  9. Direct stiffness method - Wikipedia

    en.wikipedia.org/wiki/Direct_stiffness_method

    It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM). In applying the method, the system must be modeled as a set of simpler, idealized elements interconnected at the ...