Search results
Results from the WOW.Com Content Network
A number of platforms have subtle differences in their implementation of the call stack that can affect the way a stack buffer overflow exploit will work. Some machine architectures store the top-level return address of the call stack in a register.
Peek: the topmost item is inspected (or returned), but the stack pointer and stack size does not change (meaning the item remains on the stack). This can also be called the top operation. Swap or exchange: the two topmost items on the stack exchange places. Rotate (or Roll): the n topmost items are moved on the stack in a rotating fashion.
At function return, the stack pointer is instead restored to the frame pointer, the value of the stack pointer just before the function was called. Each stack frame contains a stack pointer to the top of the frame immediately below. The stack pointer is a mutable register shared between all invocations. A frame pointer of a given invocation of ...
When a function executes, it may add some of its local state data to the top of the stack; when the function exits it is responsible for removing that data from the stack. At a minimum, a thread's stack is used to store the location of a return address provided by the caller in order to allow return statements to return to the correct location.
C++ changes some C standard library functions to add additional overloaded functions with const type qualifiers, e.g. strchr returns char* in C, while C++ acts as if there were two overloaded functions const char *strchr(const char *) and a char *strchr(char *). In C23 generic selection is used to make C's behaviour more similar to C++'s. [11]
*/ /* This implementation does not implement composite functions, functions with a variable number of arguments, or unary operators. */ while there are tokens to be read: read a token if the token is: - a number: put it into the output queue - a function: push it onto the operator stack - an operator o 1: while ( there is an operator o 2 at the ...
In computing, a stack trace (also called stack backtrace [1] or stack traceback [2]) is a report of the active stack frames at a certain point in time during the execution of a program. When a program is run, memory is often dynamically allocated in two places: the stack and the heap. Memory is continuously allocated on a stack but not on a heap.
When an object is created, a pointer to this table, called the virtual table pointer, vpointer or VPTR, is added as a hidden member of this object. As such, the compiler must also generate "hidden" code in the constructors of each class to initialize a new object's virtual table pointer to the address of its class's virtual method table.