enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of n {\displaystyle n} items numbered from 1 up to n {\displaystyle n} , each with a weight w i {\displaystyle w_{i}} and a value v i {\displaystyle v_{i}} , along with a maximum weight capacity ...

  3. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling; Numerical 3-dimensional matching [3]: SP16 Open-shop scheduling; Partition problem [2] [3]: SP12 Quadratic assignment problem [3]: ND43 Quadratic programming (NP-hard in some cases, P if convex)

  5. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.

  6. Combinatorial optimization - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_optimization

    A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.

  7. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The graph shows the running time vs. problem size for a knapsack problem of a state-of-the-art, specialized algorithm. The quadratic fit suggests that the algorithmic complexity of the problem is O((log(n)) 2). [24]

  8. Fully polynomial-time approximation scheme - Wikipedia

    en.wikipedia.org/wiki/Fully_polynomial-time...

    Indeed, this problem does not have an FPTAS unless P=NP. The same is true for the two-dimensional knapsack problem. The same is true for the multiple subset sum problem: the quasi-dominance relation should be: s quasi-dominates t iff max(s 1, s 2) ≤ max(t 1, t 2), but it is not preserved by transitions, by the same example as above. 2.

  9. Approximation algorithm - Wikipedia

    en.wikipedia.org/wiki/Approximation_algorithm

    NP-hard problems vary greatly in their approximability; some, such as the knapsack problem, can be approximated within a multiplicative factor +, for any fixed >, and therefore produce solutions arbitrarily close to the optimum (such a family of approximation algorithms is called a polynomial-time approximation scheme or PTAS).