Search results
Results from the WOW.Com Content Network
A rotary valve (also called rotary-motion valve) is a type of valve in which the rotation of a passage or passages in a transverse plug regulates the flow of liquid or gas through the attached pipes. [1] The common stopcock is the simplest form of rotary valve. Rotary valves have been applied in numerous applications, including:
Process plants consist of hundreds, or even thousands, of control loops all networked together to produce a product to be offered for sale. Each of these control loops is designed to keep some important process variable, such as pressure, flow, level, or temperature, within a required operating range to ensure the quality of the end product.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Rotary valves and piston valves: parts of brass instruments used to change their pitch; Rotolock valve; Rupture disc: a one-time-use replaceable valve for rapid pressure relief, used to protect piping systems from excessive pressure or vacuum; more reliable than a safety valve; Saddle valve: where allowed, is used to tap a pipe for a low-flow need
Example of a single industrial control loop; showing continuously modulated control of process flow. Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows:
A rotary union is a union that allows for rotation of the united parts. It is thus a device that provides a seal between a stationary supply passage (such as pipe or tubing) and a rotating part (such as a drum, cylinder, or spindle) to permit the flow of a fluid into and/or out of the
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
ISO 10628 Diagrams for the chemical and petrochemical industry specifies the classification, content, and representation of flow diagrams. It does not apply to electrical engineering diagrams. ISO 10628 consists of the following parts: Part 1: Specification of Diagrams (ISO 10628-1:2014) [1] Part 2: Graphical Symbols (ISO 10628-2:2012)