Search results
Results from the WOW.Com Content Network
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
6 are red, and; 4 are yellow, then the ratio of red to white to yellow cars is 6 to 2 to 4. The ratio of yellow cars to white cars is 4 to 2 and may be expressed as 4:2 or 2:1. A ratio is often converted to a fraction when it is expressed as a ratio to the whole. In the above example, the ratio of yellow cars to all the cars on the lot is 4:12 ...
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
For example, the pair (3, 7) represents the rational number . [153] One way to construct the real numbers relies on the concept of Dedekind cuts . According to this approach, each real number is represented by a partition of all rational numbers into two sets, one for all numbers below the represented real number and the other for the rest. [ 154 ]
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
A complex rational function with degree one is a Möbius transformation. Rational functions are representative examples of meromorphic functions. [3] Iteration of rational functions on the Riemann sphere (i.e. a rational mapping) creates discrete dynamical systems. [4] Julia sets for rational maps