enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    The electric field is defined as a vector field that associates to each point in space the force per unit of charge exerted on an infinitesimal test charge at rest at that point. [2] [3] [4] The SI unit for the electric field is the volt per meter (V/m), which is equal to the newton per coulomb (N/C). [5]

  3. List of SI electromagnetism units - Wikipedia

    en.wikipedia.org/wiki/List_of_SI...

    electric flux: volt metre: V⋅m kg⋅m 3 ⋅s −3 ⋅A −1: E electric field strength volt per metre: V/m = N/C kg⋅m⋅A −1 ⋅s −3: D electric displacement field: coulomb per square metre: C/m 2: A⋅s⋅m −2: ε permittivity: farad per metre: F/m kg −1 ⋅m −3 ⋅A 2 ⋅s 4: χ e electric susceptibility (dimensionless) 1 1 p ...

  4. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Measure of the separation of equal and opposite electric charges C⋅m L T I: vector Electric displacement field: D →: Strength of the electric displacement C/m 2: L −2 T I: vector field Electric field strength: E →: Strength of the electric field V/m, N/C L M T −3 I −1: vector field: Force: F →: Transfer of momentum per unit time ...

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.

  6. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force , q ( v × B ) .

  7. Signal strength in telecommunications - Wikipedia

    en.wikipedia.org/wiki/Signal_strength_in...

    The electric field strength at a specific point can be determined from the power delivered to the transmitting antenna, its geometry and radiation resistance. Consider the case of a center-fed half-wave dipole antenna in free space, where the total length L is equal to one half wavelength (λ/2). If constructed from thin conductors, the current ...

  8. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.

  9. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    The matrix form of the field tensor yields the following properties: [3] Antisymmetry: = Six independent components: In Cartesian coordinates, these are simply the three spatial components of the electric field (E x, E y, E z) and magnetic field (B x, B y, B z).