enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  3. I-beam - Wikipedia

    en.wikipedia.org/wiki/I-beam

    The ideal beam is the one with the least cross-sectional area (and hence requiring the least material) needed to achieve a given section modulus. Since the section modulus depends on the value of the moment of inertia, an efficient beam must have most of its material located as far from the neutral axis as possible. The farther a given amount ...

  4. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    Note on second moment of area: The moment of inertia of a body moving in a plane and the second moment of area of a beam's cross-section are often confused. The moment of inertia of a body with the shape of the cross-section is the second moment of this area about the z {\displaystyle z} -axis perpendicular to the cross-section, weighted by its ...

  5. File:Area moment of inertia of a I-beam.svg - Wikipedia

    en.wikipedia.org/wiki/File:Area_moment_of...

    What links here; Upload file; Special pages; Printable version; Page information; Get shortened URL; Download QR code

  6. Direct integration of a beam - Wikipedia

    en.wikipedia.org/wiki/Direct_integration_of_a_beam

    Direct integration is a structural analysis method for measuring internal shear, internal moment, rotation, and deflection of a beam. Positive directions for forces acting on an element. For a beam with an applied weight w ( x ) {\displaystyle w(x)} , taking downward to be positive, the internal shear force is given by taking the negative ...

  7. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]

  8. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.

  9. Conjugate beam method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_beam_method

    A M/EI diagram is a moment diagram divided by the beam's Young's modulus and moment of inertia. To make use of this comparison we will now consider a beam having the same length as the real beam, but referred here as the "conjugate beam." The conjugate beam is "loaded" with the M/EI diagram derived from the load on the real beam.