Search results
Results from the WOW.Com Content Network
In thermodynamics, the bubble point is the temperature (at a given pressure) where the first bubble of vapor is formed when heating a liquid consisting of two or more components. [ 1 ] [ 2 ] Given that vapor will probably have a different composition than the liquid, the bubble point (along with the dew point ) at different compositions are ...
Figure 2: Change of pressure during bubble formation plotted as a function of added volume. Initially a bubble appears on the end of the capillary. As the size increases, the radius of curvature of the bubble decreases. At the point of the maximum bubble pressure, the bubble has a complete hemispherical shape whose radius is identical to the ...
Therefore the pressure step/stability method is the most recommended one for research and development applications. Additionally, the pressure step/stability measuring principle allows measuring the true First Bubble Point (FBP), in opposition to the pressure scan method, which only permits calculation the FBP at the selected flow rates.
The Rayleigh–Plesset equation is often applied to the study of cavitation bubbles, shown here forming behind a propeller.. In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is a nonlinear ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid.
The q-line (depicted in blue in Figure 1) intersects the point of intersection of the feed composition line and the x = y line and has a slope of q / (q - 1), where the parameter q denotes mole fraction of liquid in the feed. For example, if the feed is a saturated liquid, q = 1 and the slope of the q-line is infinite (drawn as a vertical line).
The equation was derived by Kozeny (1927) [1] and Carman (1937, 1956) [2] [3] [4] from a starting point of (a) modelling fluid flow in a packed bed as laminar fluid flow in a collection of curving passages/tubes crossing the packed bed and (b) Poiseuille's law describing laminar fluid flow in straight, circular section pipes.
The above equations calculate the steady state mass flow rate for the pressure and temperature existing in the upstream pressure source. If the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate. Subsequently, the mass flow rate decreases during the ...
The hardest part of bubble formation is the initial formation of the bubble; once a bubble has formed, it can grow quickly. Because the liquid is typically above its boiling point, when the liquid finally starts to boil, a large vapor bubble is formed that pushes the liquid out of the test tube, typically at high speed.