enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ulam spiral - Wikipedia

    en.wikipedia.org/wiki/Ulam_spiral

    The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's Mathematical Games column in Scientific American a short time later. [1] It is constructed by writing the positive integers in a square spiral and specially marking the prime ...

  3. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld.

  4. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  5. List of information graphics software - Wikipedia

    en.wikipedia.org/wiki/List_of_information...

    3D and volume visualization, Curve and peak fitting, Signal processing, Image processing ILNumerics: Math library for .NET / C#: GPL / proprietary: No 2006: June 11, 2015 / v4.8: Windows and Linux: Math library with rich visualization features (interactive 3D scenes, scientific plotting) and MATLAB-like syntax. Ipe: GUI, XML: GPL: Yes 1993 ...

  6. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  7. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  8. Mathematical visualization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_visualization

    The Mandelbrot set, one of the most famous examples of mathematical visualization. Mathematical phenomena can be understood and explored via visualization. Classically, this consisted of two-dimensional drawings or building three-dimensional models (particularly plaster models in the 19th and early 20th century).

  9. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.