Search results
Results from the WOW.Com Content Network
Ruby's standard library includes a BigDecimal class in the module bigdecimal. Java's standard library includes a java.math.BigDecimal class. In Objective-C, the Cocoa and GNUstep APIs provide an NSDecimalNumber class and an NSDecimal C data type for representing decimals whose mantissa is up to 38 digits long, and exponent is from −128 to 127.
The BigDecimal class in the standard library module bigdecimal has user definable precision. Scheme: R 5 RS encourages, and R 6 RS requires, that exact integers and exact rationals be of arbitrary precision. Scala: Class BigInt and Class BigDecimal. Seed7: bigInteger and bigRational. Self: arbitrary precision integers are supported by the built ...
The computer may also offer facilities for splitting a product into a digit and carry without requiring the two operations of mod and div as in the example, and nearly all arithmetic units provide a carry flag which can be exploited in multiple-precision addition and subtraction. This sort of detail is the grist of machine-code programmers, and ...
Primitive wrapper classes are not the same thing as primitive types. Whereas variables, for example, can be declared in Java as data types double, short, int, etc., the primitive wrapper classes create instantiated objects and methods that inherit but hide the primitive data types, not like variables that are assigned the data type values.
Sometimes a part of the type safety is implemented indirectly: e.g. the class BigDecimal represents a floating point number of arbitrary precision, but handles only numbers that can be expressed with a finite representation. The operation BigDecimal.divide() calculates a new object as the division of two numbers expressed as BigDecimal.
The same carry bit is also generally used to indicate borrows in subtraction, though the bit's meaning is inverted due to the effects of two's complement arithmetic. Normally, a carry bit value of "1" signifies that an addition overflowed the ALU, and must be accounted for when adding data words of lengths greater than that of the CPU. For ...
add two floats faload 30 0011 0000 arrayref, index → value load a float from an array fastore 51 0101 0001 arrayref, index, value → store a float in an array fcmpg 96 1001 0110 value1, value2 → result compare two floats, 1 on NaN fcmpl 95 1001 0101 value1, value2 → result compare two floats, -1 on NaN fconst_0 0b 0000 1011 → 0.0f
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...