Search results
Results from the WOW.Com Content Network
Metamorphism is the transformation of existing rock (the protolith) to rock with a different mineral composition or texture. Metamorphism takes place at temperatures in excess of 150 °C (300 °F), and often also at elevated pressure or in the presence of chemically active fluids, but the rock remains mostly solid during the transformation. [1]
Metasomatism (from the Greek μετά metá "change" and σῶμα sôma "body") is the chemical alteration of a rock by hydrothermal and other fluids. [1] It is traditionally defined as metamorphism which involves a change in the chemical composition, excluding volatile components. [ 2 ]
The metamorphic rock exposed in orogenic belts may have been metamorphosed simply by being at great depths below the Earth's surface, subjected to high temperatures and the great pressure caused by the immense weight of the rock layers above. This kind of regional metamorphism is known as burial metamorphism.
This contact metamorphism results in a rock that is altered and re-crystallized by the extreme heat of the magma and/or by the addition of fluids from the magma that add chemicals to the surrounding rock (metasomatism). Any pre-existing type of rock can be modified by the processes of metamorphism. [4] [5]
In inorganic chemistry, mineral hydration is a reaction which adds water to the crystal structure of a mineral, usually creating a new mineral, commonly called a hydrate.. In geological terms, the process of mineral hydration is known as retrograde alteration and is a process occurring in retrograde metamorphism.
A metamorphic reaction is a chemical reaction that takes place during the geological process of metamorphism wherein one assemblage of minerals is transformed into a second assemblage which is stable under the new temperature/pressure conditions resulting in the final stable state of the observed metamorphic rock. [1]
These rocks showed high-grade metamorphism because of the presence of magmatic water, exceeding 600 °C. This deformation depleted host rocks of 18 O, leading to further analysis of the ratio of 18 O to 16 O (δ 18 O). [11] Water in equilibrium with igneous melts should bear the same isotopic signature for 18 O and δ 2 H.
Serpentinization is a form of low-temperature (0 to ~600 °C) [5] metamorphism of ferromagnesian minerals in mafic and ultramafic rocks, such as dunite, harzburgite, or lherzolite. These are rocks low in silica and composed mostly of olivine ( (Mg 2+ , Fe 2+ ) 2 SiO 4 ), pyroxene ( XY(Si,Al) 2 O 6 ), and chromite (approximately FeCr 2 O 4 ).