Search results
Results from the WOW.Com Content Network
The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
For example, the absolute value function is identical to in the region >, whose derivative is the constant value +1, which equals the value of there. Because the absolute value is a convex function , there is at least one subderivative at every point, including at the origin.
The graph of the absolute value function. If differentiability fails at an interior point of the interval, the conclusion of Rolle's theorem may not hold. Consider the absolute value function = | |, [,]. Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero.
The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.
In mathematics, Richardson's theorem establishes the undecidability of the equality of real numbers defined by expressions involving integers, π, , and exponential and sine functions. It was proved in 1968 by the mathematician and computer scientist Daniel Richardson of the University of Bath .
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
In mathematics, an absolutely integrable function is a function whose absolute value is integrable, meaning that the integral of the absolute value over the whole domain is finite.