enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    Since every proper, orthochronous Lorentz transformation can be written as a product of a rotation (specified by 3 real parameters) and a boost (also specified by 3 real parameters), it takes 6 real parameters to specify an arbitrary proper orthochronous Lorentz transformation. This is one way to understand why the restricted Lorentz group is ...

  3. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    Lorentz transformations can be parametrized by rapidity φ for a boost in the direction of a three-dimensional unit vector ^ = (,,), and a rotation angle θ about a three-dimensional unit vector ^ = (,,) defining an axis, so ^ = (,,) and ^ = (,,) are together six parameters of the Lorentz group (three for rotations and three for boosts). The ...

  4. Representation theory of the Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    The action of the Lorentz group on the space of field configurations (a field configuration is the spacetime history of a particular solution, e.g. the electromagnetic field in all of space over all time is one field configuration) resembles the action on the Hilbert spaces of quantum mechanics, except that the commutator brackets are replaced ...

  5. Relativistic wave equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_wave_equations

    Under a proper orthochronous Lorentz transformation x → Λx in Minkowski space, all one-particle quantum states ψ j σ of spin j with spin z-component σ locally transform under some representation D of the Lorentz group: [12] [13] () where D(Λ) is some finite-dimensional representation, i.e. a matrix.

  6. Relativistic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_mechanics

    The derivative operators, and hence the energy and 3-momentum operators, are also non-invariant and change under Lorentz transformations. Under a proper orthochronous Lorentz transformation (r, t) → Λ(r, t) in Minkowski space, all one-particle quantum states ψ σ locally transform under some representation D of the Lorentz group: [13] [14]

  7. Symmetry (physics) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(physics)

    (The '3' refers to the three-dimensional space of an ordinary sphere.) Thus, the symmetry group of the sphere with proper rotations is SO(3). Any rotation preserves distances on the surface of the ball. The set of all Lorentz transformations form a group called the Lorentz group (this may be generalised to the Poincaré group).

  8. Indefinite orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Indefinite_orthogonal_group

    In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group [1] or generalized orthogonal group. [2]

  9. History of Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/History_of_Lorentz...

    [R 43] [R 44] However, this covariance is restricted to certain areas such as electrodynamics, whereas the totality of natural laws in inertial frames is covariant under the Lorentz group. [R 45] In particular, by setting λ=1 the Lorentz group SO(1,3) can be seen as a 10-parameter subgroup of the 15-parameter spacetime conformal group Con(1,3).