Search results
Results from the WOW.Com Content Network
This crystallography -related article is a stub. You can help Wikipedia by expanding it.
If the lattice or crystal is 2-dimensional, the primitive cell has a minimum area; likewise in 3 dimensions the primitive cell has a minimum volume. Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells.
Vectors and are primitive translation vectors. The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [ 1 ] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices.
Let ,, be primitive translation vectors (shortly called primitive vectors) of a crystal lattice, where atoms are located at lattice points described by = + + with , , and as any integers. (So x {\displaystyle \mathbf {x} } indicating each lattice point is an integer linear combination of the primitive vectors.)
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The primitive rectangular lattice can also be described by a centered rhombic unit cell, while the centered rectangular lattice can also be described by a primitive rhombic unit cell. Note that the length a {\displaystyle a} in the lower row is not the same as in the upper row.
In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).
Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...