Search results
Results from the WOW.Com Content Network
Janda and co-workers utilized the general Kröhnke reaction scheme to generate a 220 compound library. [15] Various methyl ketones 29 and aldehydes 30 were coupled via aldol condensation to give enones of the form 31. These compounds were then reacted with various α-pyridinium methyl ketones 32 to give the desired tri-substituted pyridine 33 ...
Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after Carl Mannich. [2] [3] Scheme 1 – Ammonia or an amine reacts with formaldehyde and an alpha acidic proton of a carbonyl compound to a beta amino carbonyl compound.
The position alpha to the carbonyl group (C=O) in a ketone is easily halogenated. This is due to its ability to form an enolate (C=C−O −) in basic solution, or an enol (C=C−OH) in acidic solution. An example of alpha halogenation is the mono-bromination of acetone ((CH 3) 2 C=O), carried out under either acidic or basic conditions, to ...
Ketones give positive results in Brady's test, the reaction with 2,4-dinitrophenylhydrazine to give the corresponding hydrazone. Ketones may be distinguished from aldehydes by giving a negative result with Tollens' reagent or with Fehling's solution. Methyl ketones give positive results for the iodoform test. [7]
(Benzylideneacetone)iron tricarbonyl is an organoiron compound with an η 2 ketone ligand. Some η 2-aldehyde complexes insert alkenes to give five-membered metallacycles. [5] η 1-Complexes of alpha-beta unsaturated carbonyls exhibit enhanced reactivity toward dienes. This interaction is the basis of Lewis-acid catalyzed Diels-Alder reactions.
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [ 2 ] and later by Fritz Schlotterbeck in 1907. [ 3 ]
Its chemical names are based on considering the structure as either an acetyl (methyl-ketone) analog of anisole. Other names It can also be seen as a methyl ether analog of acetophenone . Acetanisole is found naturally in castoreum , the glandular secretion of the beaver .