enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    3-satisfiability can be generalized to k-satisfiability (k-SAT, also k-CNF-SAT), when formulas in CNF are considered with each clause containing up to k literals. [ citation needed ] However, since for any k ≥ 3, this problem can neither be easier than 3-SAT nor harder than SAT, and the latter two are NP-complete, so must be k-SAT.

  3. Satisfiability modulo theories - Wikipedia

    en.wikipedia.org/wiki/Satisfiability_modulo_theories

    In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.

  4. Boolean satisfiability algorithm heuristics - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability...

    The partial Max-SAT problem is the problem where some clauses necessarily must be satisfied (hard clauses) and the sum total of weights of the rest of the clauses (soft clauses) are to be maximized or minimized, depending on the problem. Partial Max-SAT represents an intermediary between Max-SAT (all clauses are soft) and SAT (all clauses are ...

  5. Template:Cheatsheet - Wikipedia

    en.wikipedia.org/wiki/Template:Cheatsheet

    '''bold''' ''italics'' <sup>superscript</sup> <sub>superscript</sub> → bold: → italics: → superscript → subscript <s>strikeout</s> <u>underline</u> <big>big ...

  6. Conjunctive normal form - Wikipedia

    en.wikipedia.org/wiki/Conjunctive_normal_form

    An important set of problems in computational complexity involves finding assignments to the variables of a Boolean formula expressed in conjunctive normal form, such that the formula is true. The k-SAT problem is the problem of finding a satisfying assignment to a Boolean formula expressed in CNF in which each disjunction contains at most k ...

  7. Circuit satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Circuit_satisfiability_problem

    Notice that the 3SAT formula is equivalent to the circuit designed above, hence their output is same for same input. Hence, If the 3SAT formula has a satisfying assignment, then the corresponding circuit will output 1, and vice versa. So, this is a valid reduction, and Circuit SAT is NP-hard. This completes the proof that Circuit SAT is NP ...

  8. MAX-3SAT - Wikipedia

    en.wikipedia.org/wiki/MAX-3SAT

    He constructs a PCP Verifier for 3-SAT that reads only 3 bits from the Proof. For every ε > 0, there is a PCP-verifier M for 3-SAT that reads a random string r of length ⁠ (⁡ ()) ⁠ and computes query positions i r, j r, k r in the proof π and a bit b r. It accepts if and only if 'π(i r) ⊕ π(j r) ⊕ π(k r) = b r.

  9. Maximum satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_satisfiability_problem

    The soft satisfiability problem (soft-SAT), given a set of SAT problems, asks for the maximum number of those problems which can be satisfied by any assignment. [16] The minimum satisfiability problem. The MAX-SAT problem can be extended to the case where the variables of the constraint satisfaction problem belong to the set