Ad
related to: 12 1 graphing quadratics
Search results
Results from the WOW.Com Content Network
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4 , but it splits over F 16 , where it has the two roots ab and ab + a , where b is a root of x 2 + x + a in F 16 .
Therefore, the graph of the function f(x − h) = (x − h) 2 is a parabola shifted to the right by h whose vertex is at (h, 0), as shown in the top figure. In contrast, the graph of the function f(x) + k = x 2 + k is a parabola shifted upward by k whose vertex is at (0, k), as shown in the center figure.
The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation . The solutions of a quadratic equation are the zeros (or roots ) of the corresponding quadratic function, of which there can be two, one, or zero.
For linear and quadratic functions, the graph of any function can be obtained from the graph of the parent function by simple translations and stretches parallel to the axes. For example, the graph of y = x 2 − 4 x + 7 can be obtained from the graph of y = x 2 by translating +2 units along the X axis and +3 units along Y axis.
Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
All quadratic equations will have two solutions in the complex number system, but need not have any in the real number system. For example, + = has no real number solution since no real number squared equals −1. Sometimes a quadratic equation has a root of multiplicity 2, such as: (+) =
Ad
related to: 12 1 graphing quadratics