Search results
Results from the WOW.Com Content Network
Acid strength is the tendency of an acid, symbolised by the chemical formula, to dissociate into a proton, +, and an anion, .The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.
However, the acids and bases must differ greatly in strength, e.g. one strong acid and one very weak acid. [1] Therefore, the two acids must have a pK a (or pK b) difference that is as large as possible. For example, the following can be separated: Very weak acids like phenols (pK a around 10) from stronger acids like carboxylic acids [1] (pK a ...
In water, measurable pK a values range from about −2 for a strong acid to about 12 for a very weak acid (or strong base). A buffer solution of a desired pH can be prepared as a mixture of a weak acid and its conjugate base. In practice, the mixture can be created by dissolving the acid in water, and adding the requisite amount of strong acid ...
This can be used for weak bases and strong bases. [8] An example of an acidimetric titration involving a strong base is as follows: Ba(OH) 2 + 2 H + → Ba 2+ + 2 H 2 O. In this case, the strong base (Ba(OH) 2) is neutralized by the acid until all of the base has reacted. This allows the viewer to calculate the concentration of the base from ...
If it is the result of a reaction between a strong base and a weak acid, the result is a base salt. If it is the result of a reaction between a strong acid and a strong base, the result is a neutral salt. Weak acids reacted with weak bases can produce ionic compounds with both the conjugate base ion and conjugate acid ion, such as ammonium acetate.
When there is a hydrogen ion gradient between two sides of the biological membrane, the concentration of some weak bases are focused on only one side of the membrane. [6] Weak bases tend to build up in acidic fluids. [6] Acid gastric contains a higher concentration of weak base than plasma. [6] Acid urine, compared to alkaline urine, excretes ...
A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH)
Other examples of inorganic polyprotic acids include anions of sulfuric acid, phosphoric acid and hydrogen sulfide that have lost one or more protons. In organic chemistry and biochemistry, important examples include amino acids and derivatives of citric acid. Although an amphiprotic species must be amphoteric, the converse is not true.