Search results
Results from the WOW.Com Content Network
Dopaminergic pathways (dopamine pathways, dopaminergic projections) in the human brain are involved in both physiological and behavioral processes including movement, cognition, executive functions, reward, motivation, and neuroendocrine control. [1] Each pathway is a set of projection neurons, consisting of individual dopaminergic neurons.
Inside the brain, dopamine plays important roles in executive functions, motor control, motivation, arousal, reinforcement, and reward, as well as lower-level functions including lactation, sexual gratification, and nausea. The dopaminergic cell groups and pathways make up the dopamine system which is neuromodulatory.
Dopaminergic cell groups, DA cell groups, or dopaminergic nuclei are collections of neurons in the central nervous system that synthesize the neurotransmitter dopamine. [1] In the 1960s, dopaminergic neurons or dopamine neurons were first identified and named by Annica Dahlström and Kjell Fuxe, who used histochemical fluorescence. [2]
Tuberoinfundibular pathway shown in opaque blue, connecting that hypothalamus with the pituitary gland. The tuberoinfundibular pathway refers to a population of dopamine neurons that project from the arcuate nucleus (a.k.a. the "infundibular nucleus") in the tuberal region of the hypothalamus to the median eminence. [1]
The mesolimbic pathway and a specific set of the pathway's output neurons (e.g. D1-type medium spiny neurons within the nucleus accumbens) play a central role in the neurobiology of addiction. [20] [21] [22] Drug addiction is an illness caused by habitual substance use that induces chemical changes in the brain's circuitry. [23]
Dopamine Norepinephrine Serotonin. Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromatic ring by a two-carbon chain (such as -CH 2-CH 2-). Examples are dopamine, norepinephrine and serotonin.
The combination of dopamine, serotonin and oxytocin is already pretty dreamy, but the brain takes that natural high to the next level when you reach the big O by releasing endogenous (i.e., made ...
Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS). Dopamine receptors activate different effectors through not only G-protein coupling, but also signaling through different protein (dopamine receptor-interacting proteins) interactions. [ 1 ]