enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Goldbach's weak conjecture, every odd number greater than 5 can be expressed as the sum of three primes, is a consequence of Goldbach's conjecture. Ivan Vinogradov proved it for large enough n (Vinogradov's theorem) in 1937, [1] and Harald Helfgott extended this to a full proof of Goldbach's weak conjecture in 2013.

  3. Legendre's conjecture - Wikipedia

    en.wikipedia.org/wiki/Legendre's_conjecture

    It is known that the prime number theorem gives an accurate count of the primes within short intervals, either unconditionally [5] or based on the Riemann hypothesis, [6] but the lengths of the intervals for which this has been proven are longer than the intervals between consecutive squares, too long to prove Legendre's conjecture.

  4. Goldbach's weak conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_weak_conjecture

    In 1923, Hardy and Littlewood showed that, assuming the generalized Riemann hypothesis, the weak Goldbach conjecture is true for all sufficiently large odd numbers. In 1937, Ivan Matveevich Vinogradov eliminated the dependency on the generalised Riemann hypothesis and proved directly (see Vinogradov's theorem) that all sufficiently large odd numbers can be expressed as the sum of three primes.

  5. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer. For other problems, such as the 5th, experts have traditionally agreed on a single interpretation, and a solution to ...

  6. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    The prime number theorem asserts that an integer m selected at random has roughly a ⁠ 1 / ln m ⁠ chance of being prime. Thus if n is a large even integer and m is a number between 3 and ⁠ n / 2 ⁠, then one might expect the probability of m and n − m simultaneously being prime to be ⁠ 1 / ln m ln(n − m) ⁠.

  7. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    If it is 1, then n may be prime. If a n −1 (modulo n) is 1 but n is not prime, then n is called a pseudoprime to base a. In practice, if a n −1 (modulo n) is 1, then n is usually prime. But here is a counterexample: if n = 341 and a = 2, then even though 341 = 11·31 is composite.

  8. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In 1737, Euler related the study of prime numbers to what is known now as the Riemann zeta function: he showed that the value () reduces to a ratio of two infinite products, Π p / Π (p–1), for all primes p, and that the ratio is infinite. [1] [2] In 1775, Euler stated the theorem for the cases of a + nd, where a = 1. [3]

  9. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.

  1. Related searches prime or not logic problems pdf book 1 2 summary and analysis answer

    prime or not logic problems pdf book 1 2 summary and analysis answer key