Search results
Results from the WOW.Com Content Network
Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
3. In set-builder notation, it is used as a separator meaning "such that"; see { : }. / 1. Denotes division and is read as divided by or over. Often replaced by a horizontal bar. For example, 3 / 2 or . 2. Denotes a quotient structure.
Set-builder notation makes use of predicates to define sets. In autoepistemic logic , which rejects the law of excluded middle, predicates may be true, false, or simply unknown . In particular, a given collection of facts may be insufficient to determine the truth or falsehood of a predicate.
The reason is as follows: The intersection of the collection is defined as the set (see set-builder notation) = {:,}. If M {\displaystyle M} is empty, there are no sets A {\displaystyle A} in M , {\displaystyle M,} so the question becomes "which x {\displaystyle x} 's satisfy the stated condition?"
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...
An important special case is when the index set is , the natural numbers: this Cartesian product is the set of all infinite sequences with the i-th term in its corresponding set X i. For example, each element of ∏ n = 1 ∞ R = R × R × ⋯ {\displaystyle \prod _{n=1}^{\infty }\mathbb {R} =\mathbb {R} \times \mathbb {R} \times \cdots } can ...