Search results
Results from the WOW.Com Content Network
A hydrogen atom with proton and electron spins aligned (top) undergoes a flip of the electron spin, resulting in emission of a photon with a 21 cm wavelength (bottom) The hydrogen line, 21 centimeter line, or H I line [a] is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms.
The waterhole, or water hole, is an especially quiet band of the electromagnetic spectrum between 1420 and 1662 megahertz, corresponding to wavelengths of 18–21 centimeters. It is a popular observing frequency used by radio telescopes in radio astronomy .
In cosmology, intensity mapping is an observational technique for surveying the large-scale structure of the universe by using the integrated radio emission from unresolved gas clouds. In its most common variant, 21 cm intensity mapping, the 21cm emission line of neutral hydrogen is used to trace the gas. The hydrogen follows fluctuations in ...
For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ). Energy level diagram of electrons in hydrogen atom. There are emission lines from hydrogen that fall outside of these series, such as the 21 cm line.
The amount of energy needed to reverse the spin of the electron is equivalent to a photon at the frequency of 1.420 405 751 768 GHz, [1] which corresponds to the 21 cm line in the hydrogen spectrum. Hydrogen masers are very complex devices and sell for as much as US$235,000. [2] There are two types to be distinguished: active and passive.
(H is the chemical symbol for hydrogen, and "I" is the Roman numeral. It is customary in astronomy to use the Roman numeral I for neutral atoms, II for singly-ionized—HII is H + in other sciences—III for doubly-ionized, e.g. OIII is O ++ , etc. [ 1 ] ) These regions do not emit detectable visible light (except in spectral lines from ...
The first stars ionized the gas around them, which produced a specific pattern of ionization. PasT detects the brightness of the 21 cm hydrogen line at redshift from 6 to 25. This hydrogen cosmic background radiation disappears on ionization, allowing the study of large scale structure and of star formation at this very early epoch.
The warm neutral medium produces most of the 21-cm line emission from hydrogen detected by radio telescopes, although atomic hydrogen in the cold neutral medium also contributes, both in emission and by absorption of photons from background warm gas ('H I self-absorption', HISA). While not important for cooling, the 21-cm line is easily ...