enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  3. Wythoff array - Wikipedia

    en.wikipedia.org/wiki/Wythoff_array

    Inspired by a similar Stolarsky array previously defined by Stolarsky (1977), Morrison (1980) defined the Wythoff array as follows. Let = + denote the golden ratio; then the th winning position in Wythoff's game is given by the pair of positive integers (⌊ ⌋, ⌊ ⌋), where the numbers on the left and right sides of the pair define two complementary Beatty sequences that together include ...

  4. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    A golden rectangle with long side a + b and short side a can be divided into two pieces: a similar golden rectangle (shaded red, right) with long side a and short side b and a square (shaded blue, left) with sides of length a. This illustrates the relationship ⁠ a + b / a ⁠ = ⁠ a / b ⁠ = φ.

  5. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    In each step, a square the length of the rectangle's longest side is added to the rectangle. Since the ratio between consecutive Fibonacci numbers approaches the golden ratio as the Fibonacci numbers approach infinity, so too does this spiral get more similar to the previous approximation the more squares are added, as illustrated by the image.

  6. Fibonomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Fibonomial_coefficient

    , A combinatorial approach to Fibonomial coefficients (PDF), Dept. of Mathematics, Harvey Mudd College, Claremont, CA 91711, archived from the original (PDF) on 2013-02-15}: CS1 maint: location Ewa Krot, An introduction to finite fibonomial calculus , Institute of Computer Science, Bia lystok University, Poland.

  7. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.

  8. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers .

  9. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    Each rectangle has a Fibonacci number F j as width (blue number in the center) and F j−1 as height. The vertical bands have width 10. The vertical bands have width 10. In mathematics , Zeckendorf's theorem , named after Belgian amateur mathematician Edouard Zeckendorf , is a theorem about the representation of integers as sums of Fibonacci ...