Search results
Results from the WOW.Com Content Network
The regularized incomplete beta function is the cumulative distribution function of the beta distribution, and is related to the cumulative distribution function (;,) of a random variable X following a binomial distribution with probability of single success p and number of Bernoulli trials n:
For every odd positive integer +, the following equation holds: [3] (+) = ()!() +where is the n-th Euler Number.This yields: =,() =,() =,() =For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers ...
In mathematics, there are two types of Euler integral: [1]. The Euler integral of the first kind is the beta function (,) = = () (+); The Euler integral of the second kind is the gamma function [2] =
Selberg's formula implies Dixon's identity for well poised hypergeometric series, and some special cases of Dyson's conjecture. This is a corollary of Aomoto. This is a corollary of Aomoto. Aomoto's integral formula
In mathematical logic, Gödel's β function is a function used to permit quantification over finite sequences of natural numbers in formal theories of arithmetic. The β function is used, in particular, in showing that the class of arithmetically definable functions is closed under primitive recursion, and therefore includes all primitive recursive functions.
Beta functions are usually computed in some kind of approximation scheme. An example is perturbation theory , where one assumes that the coupling parameters are small. One can then make an expansion in powers of the coupling parameters and truncate the higher-order terms (also known as higher loop contributions, due to the number of loops in ...
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
Beta function (physics), details the running of the coupling strengths; Dirichlet beta function, closely related to the Riemann zeta function; Gödel's β function, used in mathematical logic to encode sequences of natural numbers; Beta function (accelerator physics), related to the transverse beam size at a given point in a beam transport system