enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stable Diffusion - Wikipedia

    en.wikipedia.org/wiki/Stable_Diffusion

    Diagram of the latent diffusion architecture used by Stable Diffusion The denoising process used by Stable Diffusion. The model generates images by iteratively denoising random noise until a configured number of steps have been reached, guided by the CLIP text encoder pretrained on concepts along with the attention mechanism, resulting in the ...

  3. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.

  4. Fréchet inception distance - Wikipedia

    en.wikipedia.org/wiki/Fréchet_inception_distance

    The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model. [2] [3] The FID compares the distribution of generated images with the distribution of a set of real images (a "ground truth" set).

  5. Diffusion model - Wikipedia

    en.wikipedia.org/wiki/Diffusion_model

    DALL-E 2 is a 3.5-billion cascaded diffusion model that generates images from text by "inverting the CLIP image encoder", the technique which they termed "unCLIP". The unCLIP method contains 4 models: a CLIP image encoder, a CLIP text encoder, an image decoder, and a "prior" model (which can be a diffusion model, or an autoregressive model).

  6. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    For example, GPT-3, and its precursor GPT-2, [11] are auto-regressive neural language models that contain billions of parameters, BigGAN [12] and VQ-VAE [13] which are used for image generation that can have hundreds of millions of parameters, and Jukebox is a very large generative model for musical audio that contains billions of parameters.

  7. Diffusion map - Wikipedia

    en.wikipedia.org/wiki/Diffusion_map

    Applications based on diffusion maps include face recognition, [7] spectral clustering, low dimensional representation of images, image segmentation, [8] 3D model segmentation, [9] speaker verification [10] and identification, [11] sampling on manifolds, anomaly detection, [12] [13] image inpainting, [14] revealing brain resting state networks ...

  8. Diffusion process - Wikipedia

    en.wikipedia.org/wiki/Diffusion_process

    In probability theory and statistics, diffusion processes are a class of continuous-time Markov process with almost surely continuous sample paths. Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems.

  9. Template matching - Wikipedia

    en.wikipedia.org/wiki/Template_matching

    Template matching [1] is a technique in digital image processing for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, [ 2 ] navigation of mobile robots , [ 3 ] or edge detection in images.