enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    In physics, Planck's law (also Planck radiation law [1]: 1305 ) describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.

  3. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    The problem was solved in 1901 by Max Planck in the formalism now known as Planck's law of blackbody radiation. [26] By making changes to Wien's radiation law (not to be confused with Wien's displacement law) consistent with thermodynamics and electromagnetism, he found a mathematical expression fitting the experimental data satisfactorily ...

  4. Planck postulate - Wikipedia

    en.wikipedia.org/wiki/Planck_postulate

    This assumption allowed Planck to derive a formula for the entire spectrum of the radiation emitted by a black body. Planck was unable to justify this assumption based on classical physics; he considered quantization as being purely a mathematical trick, rather than (as is now known) a fundamental change in the understanding of the world. [1]

  5. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  6. Ultraviolet catastrophe - Wikipedia

    en.wikipedia.org/wiki/Ultraviolet_catastrophe

    In particular, Planck assumed that electromagnetic radiation can be emitted or absorbed only in discrete packets, called quanta, of energy: = =, where: h is the Planck constant, ν is the frequency of light, c is the speed of light, λ is the wavelength of light.

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Stefan–Boltzmann law may be expressed as a formula for radiance as a function of temperature. Radiance is measured in watts per square metre per steradian (W⋅m −2 ⋅sr −1 ). The Stefan–Boltzmann law for the radiance of a black body is: [ 9 ] : 26 [ 10 ] L Ω ∘ = M ∘ π = σ π T 4 . {\displaystyle L_{\Omega }^{\circ }={\frac ...

  8. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Historically, Planck derived the black body radiation law and detailed balance according to a classical thermodynamic argument, with a single heuristic step, which was later interpreted as a quantization hypothesis. [14] [15] In Planck's set up, he started with a large Hohlraum at a fixed temperature . At thermal equilibrium, the Hohlraum is ...

  9. Rayleigh–Jeans law - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Jeans_law

    In 1900 Max Planck empirically obtained an expression for black-body radiation expressed in terms of wavelength λ = c/ν (Planck's law): =, where h is the Planck constant, and k B is the Boltzmann constant. Planck's law does not suffer from an ultraviolet catastrophe and agrees well with the experimental data, but its full significance (which ...