enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Adaptive instance normalization (AdaIN) is a variant of instance normalization, designed specifically for neural style transfer with CNNs, rather than just CNNs in general. [ 27 ] In the AdaIN method of style transfer, we take a CNN and two input images, one for content and one for style .

  3. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    The correlation between the gradients are computed for four models: a standard VGG network, [5] a VGG network with batch normalization layers, a 25-layer deep linear network (DLN) trained with full-batch gradient descent, and a DLN network with batch normalization layers. Interestingly, it is shown that the standard VGG and DLN models both have ...

  4. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  5. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Also known as min-max scaling or min-max normalization, rescaling is the simplest method and consists in rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the target range depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: [3]

  6. Instance selection - Wikipedia

    en.wikipedia.org/wiki/Instance_selection

    Instance selection (or dataset reduction, or dataset condensation) is an important data pre-processing step that can be applied in many machine learning (or data mining) tasks. [1] Approaches for instance selection can be applied for reducing the original dataset to a manageable volume, leading to a reduction of the computational resources that ...

  7. Federated learning - Wikipedia

    en.wikipedia.org/wiki/Federated_learning

    Unbalanced: the amount of data available at the local nodes may vary significantly in size. [3] [6] The loss in accuracy due to non-iid data can be bounded through using more sophisticated means of doing data normalization, rather than batch normalization. [13]

  8. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    One can normalize input scores by assuming that the sum is zero (subtract the average: where =), and then the softmax takes the hyperplane of points that sum to zero, =, to the open simplex of positive values that sum to 1 =, analogously to how the exponent takes 0 to 1, = and is positive.

  9. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks.Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit, in the sense of distribution.