Search results
Results from the WOW.Com Content Network
Two urns containing white and red balls. In probability and statistics, an urn problem is an idealized mental exercise in which some objects of real interest (such as atoms, people, cars, etc.) are represented as colored balls in an urn or other container. One pretends to remove one or more balls from the urn; the goal is to determine the ...
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.
2.1×10 −2: Probability of being dealt a three of a kind in poker 2.3×10 −2: Gaussian distribution: probability of a value being more than 2 standard deviations from the mean on a specific side [17] 2.7×10 −2: Probability of winning any prize in the Powerball with one ticket in 2006 3.3×10 −2: Probability of a human giving birth to ...
The probability of drawing a red and a club in two drawings without replacement is then 26/52 × 13/51 × 2 = 676/2652, or 13/51. With replacement, the probability would be 26/52 × 13/52 × 2 = 676/2704, or 13/52. In probability theory, the word or allows for the possibility of both events happening. The probability of one or both events ...
There are two broad categories [1] [2] of probability interpretations which can be called "physical" and "evidential" probabilities. Physical probabilities, which are also called objective or frequency probabilities , are associated with random physical systems such as roulette wheels, rolling dice and radioactive atoms.
Then the set X = {{x 1, y 1}, {x 2, y 2}, {x 3, y 3}, ...} can be in the model but sets such as {x 1, x 2, x 3, ...} cannot, and thus X cannot have a choice function. In 1938, [ 19 ] Kurt Gödel showed that the negation of the axiom of choice is not a theorem of ZF by constructing an inner model (the constructible universe ) that satisfies ZFC ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.