Search results
Results from the WOW.Com Content Network
sha1sum can only create checksums of one or multiple files inside a directory, but not of a directory tree, i.e. of subdirectories, sub-subdirectories, etc. and the files they contain. This is possible by using sha1sum in combination with the find command with the -exec option, or by piping the output from find into xargs .
A Gemini request consists only of such a URL, terminated by CRLF; the header of a Gemini response consists of a two-digit status code, a space, and a "meta" field, also terminated by CRLF. If the server is successful in finding the requested file, the "meta" field is the MIME type of the returned file and after the header follows the file data.
SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm . Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010.
XML Signature (also called XMLDSig, XML-DSig, XML-Sig) defines an XML syntax for digital signatures and is defined in the W3C recommendation XML Signature Syntax and Processing.
SEAL is a stream cipher that uses SHA-1 to generate internal tables, which are then used in a keystream generator more or less unrelated to the hash algorithm. SEAL is not guaranteed to be as strong (or weak) as SHA-1. Similarly, the key expansion of the HC-128 and HC-256 stream ciphers makes heavy use of the SHA-256 hash function.
They are both part of the file system rather than of the partition. For example, ext2–4 contain a UUID, while NTFS or FAT32 do not. The superblock is a part of the file system, thus fully contained within the partition, hence doing dd if=/dev/sda1 of=/dev/sdb1 leaves both sda1 and sdb1 with the same label and UUID.
Replacing SHA-1 is urgent where it is used for digital signatures. All major web browser vendors ceased acceptance of SHA-1 SSL certificates in 2017. [15] [9] [4] In February 2017, CWI Amsterdam and Google announced they had performed a collision attack against SHA-1, publishing two dissimilar PDF files which produced the same SHA-1 hash.
The algorithm uses a key pair consisting of a public key and a private key. The private key is used to generate a digital signature for a message, and such a signature can be verified by using the signer's corresponding public key.