Search results
Results from the WOW.Com Content Network
The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...
The Gram matrix of a sequence of points ,, …, in k-dimensional space ℝ k is the n×n matrix = of their dot products (here a point is thought of as a vector from 0 to that point): g i j = x i ⋅ x j = ‖ x i ‖ ‖ x j ‖ cos θ {\displaystyle g_{ij}=x_{i}\cdot x_{j}=\|x_{i}\|\|x_{j}\|\cos \theta } , where θ {\displaystyle \theta ...
After the algorithm has converged, the singular value decomposition = is recovered as follows: the matrix is the accumulation of Jacobi rotation matrices, the matrix is given by normalising the columns of the transformed matrix , and the singular values are given as the norms of the columns of the transformed matrix .
The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
For example - to calculate the area of a parallelogram given within a 3-d space by determinant is hard, because we need to find an orthonormal base for the plane in which the parallelogram lies and transform the vectors to that base, but using the gramian matrix it is very simple (see the external link).