enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3-partition problem - Wikipedia

    en.wikipedia.org/wiki/3-partition_problem

    In 3-Partition the goal is to partition S into m = n/3 subsets, not just a fixed number of subsets, with equal sum. Partition is "easier" than 3-Partition: while 3-Partition is strongly NP-hard, Partition is only weakly NP-hard - it is hard only when the numbers are encoded in non-unary system, and have value exponential in n.

  3. Shard (database architecture) - Wikipedia

    en.wikipedia.org/wiki/Shard_(database_architecture)

    Horizontal partitioning splits one or more tables by row, usually within a single instance of a schema and a database server. It may offer an advantage by reducing index size (and thus search effort) provided that there is some obvious, robust, implicit way to identify in which partition a particular row will be found, without first needing to search the index, e.g., the classic example of the ...

  4. Balanced number partitioning - Wikipedia

    en.wikipedia.org/wiki/Balanced_number_partitioning

    Another special case called 3-partitioning is when the number of items in each subset should be at most 3 (k = 3). Deciding whether there exists such a partition with equal sums is exactly the 3-partition problem, which is known to be strongly NP-hard. There are approximation algorithms that aim to find a partition in which the sum is as nearly ...

  5. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .

  6. Greedy number partitioning - Wikipedia

    en.wikipedia.org/wiki/Greedy_number_partitioning

    In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...

  7. Multiway number partitioning - Wikipedia

    en.wikipedia.org/wiki/Multiway_number_partitioning

    [1]: sec.5 The problem is parametrized by a positive integer k, and called k-way number partitioning. [2] The input to the problem is a multiset S of numbers (usually integers), whose sum is k*T. The associated decision problem is to decide whether S can be partitioned into k subsets such that the sum of each subset is exactly T.

  8. Snowflake schema - Wikipedia

    en.wikipedia.org/wiki/Snowflake_schema

    The snowflake schema is in the same family as the star schema logical model. In fact, the star schema is considered a special case of the snowflake schema. The snowflake schema provides some advantages over the star schema in certain situations, including: Some OLAP multidimensional database modeling tools are optimized for snowflake schemas. [3]

  9. Pseudopolynomial time number partitioning - Wikipedia

    en.wikipedia.org/wiki/Pseudopolynomial_time...

    The algorithm can be extended to the k-way multi-partitioning problem, but then takes O(n(k − 1)m k − 1) memory where m is the largest number in the input, making it impractical even for k = 3 unless the inputs are very small numbers. [1] This algorithm can be generalized to a solution for the subset sum problem.